Glucose for the heart.
نویسندگان
چکیده
104. McDonald T, Mac Leod D. Metabolism and the electrical activity of ventricular muscle. J Physiol (Lond). 1973;229:559–582. 105. Scheuer J, Stezoski SW. Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Circ Res. 1970;27:835–849. 106. Lagerstrom CF, Walker WE, Taegtmeyer H. Failure of glycogen depletion to improve left ventricular function of the rabbit heart after hypothermic ischemic arrest. Circ Res. 1988;63:81–86. 107. Schneider CA, Taegtmeyer H. Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the isolated working rat heart. Circ Res. 1991;68:1045–1050.Depre et al February 2, 1999 587 bygestonAril6,2017http://ciajournals.org/Downladedfrom 108. Doenst T, Guthrie PH, Chemnitius JM, Zech R, Taegtmeyer H. Fasting,lactate, and insulin improve ischemia tolerance: a comparison withischemic preconditioning. Am J Physiol. 1996;270:H1607–H1615.109. Depre C, Hue L. Inhibition of glycogenolysis by a glucose analogue inthe working rat heart. J Mol Cell Cardiol. 1997;29:2253–2259.110. Runnman EM, Lamp ST, Weiss JN. Enhanced utilization of exogenousglucose improves cardiac function in hypoxic rabbit ventricle withoutincreasing total glycolytic flux. J Clin Invest. 1990;86:1222–1233.111. Cross HR, Opie LH, Radda GK, Clarke K. Is a high glycogen contentbeneficial or detrimental to the ischemic rat heart?: a controversyresolved. Circ Res. 1996;78:482–491.112. Vanoverschelde JL, Wijns W, Borgers M, Heyndrickx G, Depre C,Flameng W, Melin J. Chronic myocardial hibernation: from bedside tobench. Circulation. 1997;95:1961–1971.113. Borgers M, Thoné F, Wouters L, Ausma J, Shivalkar B, Flameng W.Structural correlates of regional myocardial dysfunction in patients withcritical coronary artery stenosis. Cardiovasc Pathol. 1993;2:237–245.114. Elsasser A, Schleper M, Klovekorn WP, Cai WP, Zimmermann R,Muller KD, Strasser R, Kostin S, Gagel C, Munkel B, Schaper W,Schaper J. Hibernating myocardium: an incomplete adaptation to ische-mia. Circulation. 1997;96:2920–2931.115. Maki M, Luotolahti M, Nuutila P, Iida H, Voipio-Pulkki LM, RuotsalainenU, Haaparenta M, Solin O, Hartiala J, Harkonen R, Knuuti MJ. Glucoseuptake in the chronically dysfunctional but viable myocardium. Circulation.1996;93:1658–1666.116. Depre C, Vanoverschelde JL, Gerber B, Borgers M, Melin J, Dion R.Correlation of functional recovery with myocardial blood flow, glucoseuptake, and morphologic features in patients with chronic left ventricularischemic dysfunction undergoing coronary artery bypass grafting.J Thorac Cardiovasc Surg. 1997;113:371–378.117. Thompson EW, Marino TA, Uboh CE, Kent RL, Cooper G. Atrophyreversal and cardiocyte redifferentiation in reloaded cat myocardium.Circ Res. 1984;54:367–377.118. Depre C, Havaux X, Dion R, Vanoverschelde JL. Morphologic alter-ations of myocardium under left ventricular assistance. J Thorac Car-diovasc Surg. 1998;115:478–479.119. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB. Four briefperiods of myocardial ischemia cause no cumulative ATP loss ornecrosis. Am J Physiol. 1986;251:H1306–H1315.120. Weiss RG, de Albuquerque CP, Vandegaer K, Chacko VP, Gerstenblith G.Attenuated glycogenolysis reduces glycolytic catabolite accumulationduring ischemia in preconditioned rat hearts. Circ Res. 1996;79:435–446.121. Wolfe CL, Sievers RE, Visseren FLJ, Donnelly TJ. Loss of myocardialprotection after preconditioning correlates with the time-course ofglycogen recovery within the preconditioned segment. Circulation.1990;66:913–931.122. Kida M, Fujiwara H, Ishida M, Keuwon C, Ohura M, Miura I,Yabunclin Y. Ischemic preconditioning preserves creatine phosphateand intracellular pH. Circulation. 1991;84:2495–2503.123. Liedtke AJ, Demaison L, Nellis SH. Effects of L-propionylcarnitine onmechanical recovery during reflow in intact hearts. Am J Physiol. 1988;255:169–176.124. Gorge G, Chatelain P, Schaper J, Lerch R. Effect of increasing degreesof ischemic injury on myocardial oxidative metabolism early after reper-fusion in isolated rat hearts. Circ Res. 1991;68:1681–1692.125. Benzi RH, Lerch R. Dissociation between contractile function andoxidative metabolism in postischemic myocardium. Circ Res. 1992;71:567–576.126. Liu B, Alaoui-Talibi Z, Clanachan AS, Schultz R, Lopaschuk GD.Uncoupling of contractile function from mitochondrial TCA cycleactivity and MVO2 during reperfusion of ischemic hearts. Am J Physiol.1996;270:H72–H80.127. Mallet RT, Hartman DA, Bünger R. Glucose requirement for postischemicrecovery of perfused working heart. Eur J Biochem. 1990;188:481–493.128. Jeremy RW, Koretsune Y, Marban E, Becker LC. Relation betweenglycolysis and calcium homeostasis in postischemic myocardium. CircRes. 1992;70:1180–1190.129. Tamm C, Benzi RH, Papageorgiou I, Tardy I, Lerch R. Substratecompetition in postischemic myocardium: effect of substrate availabilityduring reperfusion on metabolic and contractile recovery in isolated rathearts. Circ Res. 1994;75:1103–1112.130. du Toit EF, Opie LH. Modulation of severity of reperfusion stunning inthe isolated rat heart by agents altering calcium flux at onset of reper-fusion. Circ Res. 1992;70:960–967.131. McVeigh JJ, Lopaschuk GD. Dichloroacetate stimulation of glucoseoxidation improves recovery of ischemic rat hearts. Am J Physiol.1990;259:H1079–H1085.132. Murphy E, Perlman M, London RE, Steenbergen C. Amiloride delaysthe ischemia-induced rise in cytosolic free calcium. Circ Res. 1991;68:1250–1258.133. Tani M. Mechanism of Ca overload in reperfused ischemic myocar-dium. Annu Rev Physiol. 1990;52:543–559.134. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fattyacid oxidation during reperfusion of ischemic hearts are associated witha decrease in malonyl-CoA levels due to an increase in 59-AMP-acti-vated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem.1995;270:17513–17520.135. Kudo N, Gillespie JG, Kung L, Witters, LA, Schulz R, Clanachan AS,Lopaschuk GD. Characterization of 59AMP-activated protein kinaseactivity in the heart and its role in inhibiting acetyl-CoA carboxylaseduring reperfusion following ischemia. Biochim Biophys Acta. 1996;1301:67–75.136. Bunger R, Mallet RT, Hartman DA. Pyruvate-enhanced phosphorylationpotential and inotropism in normoxic and postischemic isolated workingheart. Eur J Biochem. 1989;180:221–233.137. De Leiris J, Lubbe WF, Opie LH. Effects of free fatty acid and glucoseon enzyme release in experimental myocardial infarction. Nature. 1975;153:746–747.138. Sodi-Pallares D, Testelli MR, Fishleder BL. Effects of intravenousinfusion of a potassium-glucose-insulin solution on the electrocardio-graphic signs of myocardial infarction. Am J Cardiol. 1962;9:166–181.139. Maroko PR, Libby P, Sobel BE, Bloor CM, Sybers HD, Shell WE,Covell JW, Braunwald E. Effect of glucose-insulin-potassium infusionon myocardial infarction following experimental coronary arteryocclusion. Circulation. 1972;45:1160–1175.140. Rogers WJ, Stanley AW, Breing JB, Prather JW, McDaniel HG,Moraski RE, Mantle JA, Russell RO, Rackley CE. Reduction of hospitalmortality rate of acute myocardial infarction with glucose-insulin-potassium infusion. Am Heart J. 1976;92:441–454.141. Whitlow PL, Rogers WJ, Smith LR, McDaniel HG, Papapietro SE,Mantle JA, Logic JR, Russell RO, Rackley CE. Enhancement of leftventricular function by glucose-insulin-potassium infusion in acutemyocardial infarction. Am J Cardiol. 1982;49:811–820.142. Satler LF, Green CE, Kent KM, Pallas RS, Pearle DL, Rackley CE.Metabolic support during coronary reperfusion. Am Heart J. 1987;114:54–58.143. Malmberg K, Ryden L, Efendic S, Herlitz J, Nicol P, Waldenstrom A,Wedel H, Welin L. Randomized trial of insulin-glucose infusionfollowed by subcutaneous insulin treatment in diabetic patients withacute myocardial infarction (DIGAMI study): effects on mortality at 1year. J Am Coll Cardiol. 1995;26:57–65.144. Fath-Ordoubadi F, Beatt KJ. Glucose-insulin-potassium therapy fortreatment of acute myocardial infarction: an overview of randomizedplacebo-controlled trials. Circulation. 1997;96:1152–1156.145. Schaefer S, Prussel E, Carr LJ. Requirement of glycolytic substrate formetabolic recovery during moderate low flow ischemia. J Mol CellCardiol. 1995;27:2167–2176.146. Taegtmeyer H, Villalobos DH. Metabolic support for the postischaemicheart. Lancet. 1995;345:1552–1555.147. Lazar HL. Enhanced preservation of acutely ischemic myocardium usingglucose-insulin-potassium solutions. J Card Surg. 1984;9:474–478.148. Gradinak S, Coleman GM, Taegtmeyer H, Sweeney F, Frazier H.Improved cardiac function with glucose-insulin-potassium after coro-nary bypass surgery. Ann Thorac Surg. 1989;48:484–489.149. Taegtmeyer H, Goodwin GW, Doenst T, Frazier OH. Substrate metab-olism as a determinant for postischemic functional recovery of the heart.Am J Cardiol. 1997;80:3A–10A.150. Lazar HL, Philippides G, Fitzgerald C, Lancaster D, Sherwin RI,Apstein CS. Glucose-insulin-potassium solutions enhance recovery afterurgent coronary artery bypass grafting. J Thorac Cardiovasc Surg.1997;113:354–362.151. O’Rourke B, Ramza BM, Marban E. Oscillations of membrane currentand excitability driven by metabolic oscillations in heart cells. Science.1994;265:962–966.152. Lolley DM, Ray JF, Myers WO, Sauter RD, Tewksbury DA. Importanceof preoperative myocardial glycogen levels in human cardiac preser-vation. Cardiovasc Surg. 1979;78:678–687.
منابع مشابه
Chronic Aerobic Exercise Decreases Lectin-Like Low Density Lipoprotein (LOX-1) Receptor Expression in Heart of Diabetic Rat
Background: Overexpression of lectin-like low density lipoprotein (LOX-1) receptor plays an important role in hyperglycemia-induced vascular complications such as atherosclerosis. Based on the beneficial effects of exercise on preventing cardiovascular complications of diabetes, we aimed to examine the protective effects of aerobic exercise on expression of LOX-1 receptor and production of free...
متن کاملEffects of Eight Weeks Aerobic Exercise on Plasma Levels of Orexin A, Leptin, Glucose, Insulin, and Insulin Resistance in Males with Type 2 Diabetes
Objective: The recent study aimed to investigate the effects of chronic aerobic activity on the plasma levels of orexin A, leptin, glucose, insulin, and insulin resistance in males with type 2 diabetes. Materials and Methods: Twenty subjects randomly assigned into control and experimental groups, involving 10 people in each group. Exercise protocol consisted of eight session aerobic exercise...
متن کاملProtective role of grape seed proanthocyanidin antioxidant properties on heart of streptozotocin-induced diabetic rats
Grape seed proanthocyanidin (GSP) bears a very powerful antioxidant effects. Studies demonstrated that proanthocyanidins protect against free radicals mediated cardiovascular and renal disorders. The present study was designed to assess the effect of GSP on the heart of diabetic rats. Forty rats were divided into four groups of 10 animals each: Group I: control, Group II: control group were giv...
متن کاملPrevalence of Rose Questionnaire Angina and its Association with Coronary Heart Disease Risk Factors in Tehran, IR.Iran
Background: Rose questionnaire is a standard mean for diagnosing angina pectoris in epidemiological study. The present study was done to determine the prevalence of angina pectoris according to Rose questionnaire for chest pain, and to investigate the association of angina with several coronary hearh disease risk factors in Tehran urban population (district-13) during 1999 to 2000. Methods: 60...
متن کاملInsulin resistance in psoriasis: A case-control study
Background: Recent studies suggest that psoriasis may be a pathogenic factor for the metabolic syndrome and atherosclerosis. The aim of our study was to investigate the metabolic state in psoriatic patients in order to clarify the association between psoriasis and insulin resistance.Methods: This single-centre, case- control study was performed between 2008 and 2010 to evaluate the metabo...
متن کاملThe Comparison of Antioxidant Effect of Aspirin, Metformin, Atorvastatin and Captopril Co-administration in the Heart and Kidney Tissues of Diabetic Rats
The present study investigated the effects of co-administration of aspirin, metformin, atorvastatin and captopril on serum lipid profile and oxidative stress in the heart and kidney of streptozotocin-induced diabetic rats. In this study, rats were randomly divided into the following eleven groups: control (Cont.), and diabetic (D), as well as 9 groups that were treated with metformin (M, 300 mg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 99 4 شماره
صفحات -
تاریخ انتشار 1999